期刊目次

加入编委

期刊订阅

添加您的邮件地址以接收即将发行期刊数据:

Open Access Article

Modern Social Science Research. 2023; 3: (2) ; 111-124 ; DOI: 10.12208/j.ssr.20230017.

Analysis of measurement of China's digital economy development level
中国数字经济发展水平测度分析

作者: 闫鑫泉 *

北方民族大学数学与信息科学学院 宁夏银川

*通讯作者: 闫鑫泉,单位:北方民族大学数学与信息科学学院 宁夏银川;

发布时间: 2023-12-08 总浏览量: 745

摘要

目的 随着智能化时代的到来,中国经济发展水平受到数字经济的影响。在新发展格局下,数字经济占据着主导地位,它不仅象征着我国经济发展速度的快慢,而且是我国综合实力的具体体现。因此,研究数字经济发展水平对我国做出重要性的决策、及时调整总体布局以及合理评价各项相关性指标具有深远的意义。方法 首先,依据熵权TOPSIS法确定各项指标的相应权重并得到各省份(除西藏、港澳台)综合得分,基于上述所得结果利用AGNES聚类算法对我国30个省的数字经济发展水平进行梯队划分,然后,利用XGBOOST算法进行特征重要性分析,最后,运用LSTM模型对2021年各省地区生产总值进行预测。结论 在我国数字经济发展中,科技创新占据较大比重,它在经济发展进程中起着关键作用;对比全国、东部、中部和西部地区的核密度估计图,西部地区的数字经济发展水平在逐年提升;通过对地区生产总值的预测,可以看出我国的数字经济发展水平在稳步提高。

关键词: 熵权TOPSIS;数字经济;AGNES层次聚类;LSTM

Abstract

Objective With the advent of the intelligent era, the level of China's economic development is influenced by the digital economy. In the new development paradigm, the digital economy occupies a dominant position. It not only symbolizes the speed of our country's economic development but also represents the concrete embodiment of our comprehensive strength. Therefore, studying the level of digital economy development is of profound significance for making important decisions, adjusting overall layout in a timely manner, and reasonably evaluating various relevant indicators in China. Method Firstly, the weights of various indicators are determined based on the entropy weight TOPSIS method, and the comprehensive scores of each province (excluding Tibet, Hong Kong, Macau, and Taiwan) are obtained. Based on the results obtained above, the AGNES clustering algorithm is used to classify the digital economy development levels of the 30 provinces in China. Then, the XGBoost algorithm is employed to analyze the feature importance. Lastly, the LSTM model is utilized to predict the regional gross domestic product (GDP) of each province for the year 2021.
Conclusion   In the development of China's digital economy, technological innovation plays a significant role and occupies a large proportion. Comparing the kernel density estimation maps of the national, eastern, central, and western regions, the digital economy development level of the western region has been improving year by year. Through the prediction of regional gross domestic product (GDP), it can be seen that China's digital economy development level is steadily increasing.

Key words: Entropy TOPSIS; Digital Economy; AGNES; LSTM

参考文献 References

[1] 李震.数字经济赋能新发展格局:理论基础、挑战和应对[J]. 社会科学, 2022(03):43-53.

[2] Zhou Xiaoyong, Zhou Dequn, Zhao Zengyao, Wang Qunwei. A framework to analyze carbon impacts of digital economy: The case of China[J]. Sustainable Production and Consumption, 2022 (prepublish).

[3] 王军,朱杰,罗茜.中国数字经济发展水平及演变测度[J].数量经济技术经济研究,2021,38(07):26-42.

[4] 邝劲松,石校菲,杨祎,黄灿灿.中国省域数字经济发展水平测度与空间演变格局研究[J].商学研究, 2022, 29(01): 94-102.

[5] 焦帅涛,孙秋碧.我国数字经济发展测度及其影响因素研究[J].调研世界,2021(07):13-23.

[6] 吴云. 数字经济可持续发展水平的测度研究[D].重庆邮电大学,2021.

[7] 陶长琪,徐茉.经济高质量发展视阈下中国创新要素配置水平的测度[J].数量经济技术经济研究,2021,38(03):3-22.

[8] Li Xiangyin,Liang Xueping,Yu Ting,Ruan Sijia,Fan Rui. Research on the Integration of Cultural Tourism Industry Driven by Digital Economy in the Context of COVID-19—Based on the Data of 31 Chinese Provinces[J]. Frontiers in Public Health,2022,10.

[9] 朱明爽. 中国数字经济规模统计测度:理论与方法[D].山东财经大学,2021.

[10] Wang Xueyang, Sun Xiumei, Zhang Haotian, Xue Chaokai. Digital Economy Development and Urban Green Innovation CA-Pability: Based on Panel Data of 274 Prefecture-Level Cities in China[J]. Sustainability, 2022, 14(5).

[11] Haita WANG, Xuhua HU, Najabat ALI. Spatial Characteristics and Driving Factors Toward the Digital Economy: Evidence from Prefecture-Level Cities in China[J]. The Journal of Asian Finance, Economics and Business (JAFEB),2022,9(2).

引用本文

闫鑫泉, 中国数字经济发展水平测度分析[J]. 现代社会科学研究, 2023; 3: (2) : 111-124.