期刊目次

加入编委

期刊订阅

添加您的邮件地址以接收即将发行期刊数据:

Open Access Article

Modern Social Science Research. 2025; 5: (8) ; 184-189 ; DOI: 10.12208/j.ssr.20250337.

Restructuring vocational English testing with Artificial Intelligence: A study on the validity and washback effect of communicative language testing theory
人工智能赋能中职英语测试模式重构:基于交际语言测试理论的效度与反拨效应研究

作者: 黎珍珠 *

北部湾职业技术学校 广西钦州

*通讯作者: 黎珍珠,单位:北部湾职业技术学校 广西钦州;

发布时间: 2025-08-31 总浏览量: 82

摘要

基于交际语言测试理论,融合人工智能前沿技术,针对广西地区中职学校学生,运用混合研究方法重构中职英语测试模式。通过量化问卷调查、质性访谈及实验数据分析,对比传统与新型 AI-CLT 测试模式下学生成绩、教学反馈及专业词汇掌握情况。研究证实,新型测试模式在听力、口语、阅读、写作等维度与学生综合语言能力显著正相关。智能评分系统提升评估客观性与效率,个性化反馈系统增强学生专业词汇掌握度,激发学习动力与自我反思能力。该模式借由情境化任务设计与多模态数据分析,有效解决“学用分离”问题,为职业教育英语测评改革提供理论与实践参考。

关键词: 交际语言测试;人工智能;效度验证;反拨效应;中职英语教育

Abstract

This study restructures the English testing model for secondary vocational schools in Guangxi, combining Communicative Language Testing (CLT) theory with cutting - edge AI tech. It uses a mixed - methods approach, including quantitative questionnaires, qualitative interviews, and experimental data analysis, to compare the CLT - based AI - powered model with the traditional one. The focus is on student performance, teaching feedback, and grasp of specialized vocabulary. The study shows a significant positive link between the new model and students' all - round language skills in listening, speaking, reading, and writing. The AI scoring system makes assessment more objective and efficient. The personalized feedback system helps students better learn professional vocabulary and promotes their motivation and self - reflection. Through scenario - based tasks and multimodal data analysis, the model effectively bridges the gap between learning and practical use, offering useful references for vocational English assessment reform.

Key words: Communicative language testing; Artificial intelligence; Validation of validity; Washback effect; English education in secondary vocational schools

参考文献 References

[1] Bachman, L.F., &Palmer, A. S.(1996).Language Testing in Practice. Oxford University Press. 

[2] Chapelle,C.A.,&Chung,Y.R.2010).The promise of NLP and speech processing technologies in language assessment. Language Testing,27(3),301-315. 

[3] 文秋芳.外语课堂教学创新研究的分类与论文撰写 [J]. 外语教育研究前沿,2023 (01):3 - 10.

[4] 文秋芳.人工智能时代的外语教育会产生颠覆性革命吗 [J]. 现代外语,2024 (05):722 - 729. 

[5] 文秋芳. “云连接论” 与多语种教学改革虚拟教研室研究导论 [J]. 外语电化教学,2022 (06):3 - 4.

[6] 李芒,葛楠.教学革命论的纰缪与反正 [J]. 中国电化教育,2022 (09):10 - 16.

[7] 黄荣怀.人工智能正加速教育变革:现实挑战与应对举措 [J]. 中国教育学刊,2022 (08):1 - 7.

[8] 文秋芳,毕争.云教研共同体学员发展性评估体系构建研究 [J]. 外语与外语教学,2024 (05):55 - 63. 

[9] 赵丽.(2022).基于CLT的中职英语教学模式创新研究.职业教育探索,15(3),78-89.

[10] 陈伟.(2021).人工智能在中职英语教学中的应用案例分析.现代教育技术,33(4),90-101.

引用本文

黎珍珠, 人工智能赋能中职英语测试模式重构:基于交际语言测试理论的效度与反拨效应研究[J]. 现代社会科学研究, 2025; 5: (8) : 184-189.